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ABSTRACT

Wang, R.; Zhu, Z.; Zhu, W.; Fu, X., and Xing, S., 2021. A dynamic marine oil spill prediction model based on deep
learning. Journal of Coastal Research, 37(4), 716–725. Coconut Creek (Florida), ISSN 0749-0208.

Water pollution resulting from shipborne oil spills has caused tremendous damage to local marine ecology and has led to
huge property losses. By establishing a multi-angle monitoring and early-warning mechanism, the oil spill’s trajectory to
a large extent can be effectively predicted, and thereby the accompanying economic losses can be reduced. In this study,
real-time processing is performed on an oil spill monitoring video frame to analyze the characteristics of the spilled oil,
such as the edge contour features, diffusion rate, centroid, area, etc. An initial system model and an oil spill behavior
monitoring model were established based on the previously mentioned characteristics. A long short-term memory
network in a recurrent neural network was introduced to deal with the memory information to obtain the connection
between features and influencing factors. The spatial variable distribution of a dynamic grid reference system, as a
substitution of the traditional original data sequence, was used as the system input. The result shows that the model has
good stability and can provide a reliable interactive prediction; the result is especially significant given the vigorous
exploitation of petroleum resources and the rapid development of maritime transportation in today’s global economy. The
auxiliary oil spill early-warning system investigated in this paper provides a scientific basis for targeted strategic oil spill
emergency planning.

ADDITIONAL INDEX WORDS: Image processing, long short-term memory, artificial intelligence, behavioral dynamic
prediction.

INTRODUCTION
The environmental and economic losses caused by the

occurrence of offshore oil spills are huge. The international

community has some practical experience in emergency

response to offshore oil spills. From 1988 to 1991, 28 oil spills

of 500,000 L (132,100 gal) or more occurred (Yapa, 1996). The

total volume of oil spilled from a major spill, excluding the

Arabian Gulf/Kuwait spill, for the same period was 293,000,000

L (77,400,00 gal). The 1991 Arabian Gulf/Kuwat spill was

estimated at 143 billion L (37.8 billion gal). Improving the

accuracy of the detection of the oil spill influence range and the

reliability of dynamic path prediction for oil spills is essential.

The current detection and prediction methods include tradi-

tional remote sensing technology and hyperspectral and

polarized oil spill remote sensing to improve the monitoring

of oil spill accidents (Bhangale et al., 2017; Garcia-Pineda et al.,

2019; Pisano et al., 2016). The use of surface drift buoys and

GPS positioning technology provides a eal-time environmental

monitoring and oil spill drift trajectory tracking (Abascal et al.,

2017; Chiri et al., 2019). Through the application of synthetic-

aperature radar echo signal images, a semi-automatic classi-

fication method is adopted to combine with GIS system

processing to analyze and evaluate the distribution range,

diffusion factors, and impact on the surrounding environment

of oil spill (Alpers, Holt, and Zeng, 2017; Garcia-Pineda et al.,

2017; Xiong and Zhou, 2019). An oil spill warning system based

on fluorescence spectroscopy is used to study the fluorescence

spectrum characteristics of different oil spill types, which

provides a method to quickly distinguish the degree of oil spill

pollution (Hou et al., 2019; Mirnaghi et al., 2019; Zhang et al.,

2019). Mansur and Price (2019) established a sea oil spill model

of the oil film under the action of tides and wind waves by

combining the hydrodynamic mathematical model and pro-

posed the motion equations of oil film diffusion, evaporation,

and emulsification expressed in the form of differential

equation. Ji et al. (2020), Yu (2019), and Zhang et al. (2020)

established a deep-sea oil spill model based on the Lagrange

integral method, which can simulate or predict the temporal

and spatial distribution of oil pollutants in the marine

environment and can also provide decision-making choices

for pre-accident risk assessment and emergency response

support.

These methods have improved the ability to monitor oil spills

to varying degrees. However, the general detection process is

relatively complex and time delayed. It generally stays only in

the aspect of oil spill detection and rarely involves dynamic

prediction of real-time oil spill behavior for edge contour

features. Humans will eventually evolve to unknown scenes to

make up for its longer reaction time. It is the most effective

auxiliary method for motion prediction to improve the

robustness and real-time nature of the early-warning system

by increasing the system’s proactive perception and predictive

planning capabilities (Mao et al., 2019). Neural networks have

powerful image processing capabilities that can identify and

predict the dynamic behavior of image to a large extent. The
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traditional recurrent neural network (RNN) structure is simple

and uses a back propagation training algorithm (Sari,

Wulandari, and Suprapto, 2019). The disadvantage of the

algorithm is that when the training time is longer, the

residuals returned by the system will be decreased exponen-

tially, and the weight update will be slow. The proposed long

short-term memory (LSTM) can effectively solve the problem of

gradient dispersion in traditional recurrent network struc-

tures. The drift, diffusion rate, and influence range of oil spills

can be further calculated by establishing a mathematical model

of oil spills and adding real-time images to the experimental

database and collecting edge contour features as well as

applying a cyclic neural network algorithm to dynamically

predict the images. Moreover, the established oil spill model

has low equipment requirements and low detection cost, and it

can be used as an auxiliary system for oil spill emergency

mitigation and recovery plan, therefore providing a strong

theoretical basis for accident monitoring and oil spill recovery.

METHODS
To establish a mathematical model of offshore oil spills, this

paper observes the real-time, two-dimensional (2D) time series

images obtained by analyzing the available silicon dioxide

melting experiments in crucible of the same category when an

offshore oil spill accident occurs. The experimental image data

was added to the experimental database, and the edge contour

features, such as the centroid, perimeter, area, and diffusion

rate of the research object (Yankelovich and Spitzer, 2019),

were collected to perform graphic analysis processing through

the cyclic neural network algorithm. By tracking the centroid

movement trajectory of the particles, an edge profile indication

module and LSTM network learning were established to

estimate the actual melting rate of silicon dioxide and dynamic

prediction of behavior.

Establishment of the Initial Model
By combining the preprocessed 2D image data set with the

improved central moment fast search algorithm, the data

tracking model of the change of the centroid position during the

melting process was calculated. According to the established

mathematical model, the following edge profile characteristics

of silicon dioxide were selected: shape (F), perimeter (L),

concentration (Cb), diffusion rate (Vx), and area (Sv). To this

end, this paper uses the LSTM networks algorithm in the RNN

to analyze and predict the change trend of the region to ensure

the accuracy of the experimental results (Jeong, Kim, and Yi,

2020). Then, this paper takes the Matplotlib tool of Python

3.7.1 to analyze the m-t relationship to obtain the melting rate

of silicon dioxide and to complete the image analysis of the

initial model. Silica undergoes a non-uniform state change in

the molten state at ultrahigh temperature, and it has adhesion;

only part of it is an extremely small, free distance state of

particles. The melting process of silicon dioxide and the process

of an oil spill at sea can be regarded as a reverse process. The

research object of this article is the 2D image set during the oil

spill process, and the goal of the research is to deduce the

dynamic simulation trend of the Dt oil spill based on the initial

image changes through neural network learning. According to

the predicted trajectory, processing work such as containment

can be performed in a targeted manner, and more rescue time

can be obtained.

The 2D time series graphs in the experimental data set

shows the fixed position of the crucible in the image and the

change of the position information of the molten silicon dioxide

particles with time. In reality, the reactions inside the blast

furnace feature dynamic, nonlinear, and hysteretic impede

accurate mathematical modeling (Ding et al., 2017). Accord-

ingly, the edge profile of the particles was characterized, and

the actual melting rate of silicon dioxide was estimated. To

confirm the positional change of silicon dioxide at high

temperature, the edge profile feature was selected, and the

real-time melting rate prediction of silicon dioxide was

calculated. Then the solution of the initial model can be

mapped to the diffusion range of oil leakage and the solution of

the rate model when the offshore oil spill event occurs.

To simplify the problem and to make this model easy to be

used in the training and testing, this paper made a basic

assumption. As the particles continue to melt at high

temperature, the particle image recognition obtained by the

high, heat-resistant camera is gradually blurred. Therefore, it

ignores the detection of micro-edge parts that cannot be

recognized by the minimum resolution of the camera. The

particles are very small, and it is assumed that the solid unit

mass mi of the particle surface is evenly distributed. The model

ignores the non-uniform velocity change of the high-tempera-

ture melting rate caused by the external environment and the

possible mathematical carry error. To track the volume change

Yy of the silicon dioxide at the time step H, data preprocessing

is performed on the original 2D image, the spatial distribution

change rate is used for prediction, and a grid-coordinate system

with a specification of n3n is established. The center of mass of

the silicon dioxide block is (x, y), which predicts the future state

sequence group.

YtþH ¼ kj�g XtþH
� �

þ Zi ð1Þ

where, XtþH and YtþH are the X and Y coordinate positions of the

mass point of the time step H, and the actual solution formula

after analyzing X and Y is xj[m1(i), m2(iþ 1), . . ., mn(IþH)],

yj[m1(i), m2(iþ 1), . . ., mn(IþH)].

In the process of extracting image edges from experimental

materials, this paper uses an improved first-order absolute

center moment search algorithm (Santiago et al., 2019). As

shown in Figure 1, S1 and S2 are the critical areas of the edge of

the pixel, Fx and Fy are the corresponding window coordinate

system. By taking the gray value of the pixel as the quality

distribution of the point and taking the image center moment

as the feature matching target, the particle centroid and the

image edges can be obtained with less deviation in this

experiment. It can work under low signal-to-noise ratio with

high recognition accuracy and strong local anti-interference

ability.

Prediction of the Dynamic Trend of Offshore Oil Spill
The marine oil spill process includes evaporation, dissolu-

tion, spreading, convection, emulsification, and other process-

es. The conventional numerical model uses different methods

to establish the oil film expansion model, convection spreading

model, and oil particle model. The calculation of each model
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improves the accuracy of the marine spill oil process behavior

prediction, but generally shortcomings such as weak general-

ization ability and poor visualization ability still occur.

This paper uses a relatively macroscopic method to do this

research. The image data collected in the early stage of oil spill

are used as input data. Through the intensive training of the

neural network, the weight parameters can be obtained, which

can well reflect the explicit or potential chain relationship

between the various influencing factors and obtain the relative

changes of various ‘‘strong action’’ and ‘‘weak effect’’ process

represented by the hidden layer in the process of oil spill.

Finally, the influence weight of evaporation, dissolution, and

emulsification on the oil spill image is weakened by the

obtained parameter values, and then the influence of oil

particle diffusion and wind, temperature, convection, and other

factors on the dynamic trajectory change of oil spill process is

mainly studied in the time-varying process of image.

The general model of the RNN can solve the problems related

to the time series relationship between t – 1 and tþ 1, but the

structure is relatively simple. The LSTM is a special RNN that

is mainly used to solve the problem of gradient disappearance

and gradient explosion in the training process similar to long

sequence (Wang, Zhu, and Li, 2019). Compared with ordinary

RNNs, LSTM does not simply perform memory overlap work,

but it also controls the transmission status through gating logic

settings so that it can perform better in a longer sequence.

Existing behavior tracking methods (ICT, GPS, RFID, etc.)

usually use physical thinking. Generally speaking, the model is

analyzed by a fixed coordinate system space segmentation

method, and the general prediction is for the close-range mode

of dynamic objects. For the other part, various position-aware

device systems are used to track the movement of objects and to

collect a large amount of spatiotemporal data. The results

showed that the relatively limited prediction range leads to

computational boundary restrictions, which makes it easy to

ignore the data errors caused by the irregular diffusion of the

density of objects. The introduction of the LSTM network

prediction model can autonomously increase the regional

influence variable Xi, add the number of hidden layers Hi,

and adjust the weight coefficient Wi between each layer so that

the system can simulate the adhesion and dependence of

relevant parameters. The image processing method using

artificial intelligence has large error tolerance, flexibility, and

real-time performance, and the experimental results can be

used as an auxiliary work of the oil spill early-warning system

and have great reference value.

The oil spill dynamic prediction model uses the spatial

distribution variable preprocessing of the dynamic grid refer-

ence system as the system input, which can well avoid the

prediction offset problem caused by the delay of the multisensor

processing of the original data. The system uses a RNN, and the

algorithm can well handle the simulation of dynamic processing

capabilities between complex interrelationships (such as the

growth of static parts and the actual movement of objects).

Physical Experiments
The damage cycle caused by an oil spill is long, and the repair

process is complicated. Only by accurately simulating and

predicting the changes of the oil spill trajectory can emergency

countermeasures better select and formulate to reduce the

damage to the local ecological environment caused by the

occurrence of oil spill accidents.

To further verify the feasibility of the model in predicting the

an oil spill trajectory, this paper selects the deep-sea oil spill

test with diesel-natural gas mixture as the leakage in the

‘‘DeepSpill’’ test set for the next numerical simulation study of

the oil film (Murawski et al., 2019). The project is a joint oil spill

test conducted by the U.S. Mineral Resources Administration

and 22 oil companies in the Norwegian waters from 27–29 June

2000. Regarding the problem of image sampling in the silica

fusion experiment, this paper has added a detailed description

of image sampling in the ‘‘Methods’’ section, including the data

perform preprocessing, preprocessing, hourglass screening,

approximate cutting, breakpoint detection, image deduction,

and other processes. The analysis of the test results is used to

prevent and respond to sudden deep-sea oil spill accidents by

obtaining the data required for the verification of the oil spill

model and by observing the monitoring equipment for deep-sea

oil spill accidents and to evaluate the safety issues of deep-sea

oil spill accidents. The experimental results are relatively

complete and highly representative.

This paper mainly studies the change of the spatial

distribution of oil film on the sea. First, the oil film is abstracted

as a body comprising a large number of elliptical discretized ‘‘oil

particles.’’ The oil particle model divides the oil spill motion

process into two main parts within the time Dt, namely the

expansion process and the drift process. Because the expansion

and drift process of the oil film is reflected in the size and

spatial location of the oil particles, this experiment takes oil

particles as the research object for experimental analysis.

Through the collection of information on the marine environ-

ment of the DeepSpill experiment to study the specific impact of

oil spills. As shown in Figures 2–4, the graph shows a smooth

wind speed-wind direction curve and schematic diagram of sea

temperature at the Helland Hansen station during the sea trial

(the analysis of specific wind direction information is more

complicated). Therefore, in this paper, the measured map of the

Figure 1. Sketch map of the algorithm, S1 and S2 are the critical areas of the

edge of the pixel, Fx and Fy are the corresponding window coordinate system

(x-y). This figure shows the schematic diagram of edge feature extraction

method in the process of experiment. The pixel value is used as the edge

processing object, and the central moment is used as the matching feature. It

can get higher recognition accuracy and stronger antijamming ability in the

environment with low signal noise ratio (SNR).
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marine environment in Figure 2 is simplified into the two most

influential pieces of sea-breeze information, the east wind and

the north wind, and finally the stable data are obtained.

Numerical Model
Assume that the total kinetic energy of the material object

system is expressed as follows:

~P ¼
X

mivi ¼ m~VC ð2Þ

VC
�! ¼ drc

!
dt
; Vi
�! ¼ dri

!
dt

VC
�! ¼

P
mi vi
!

m ¼
P

mi
d ri
!
dt

m ¼
P

midri
!

m

9>=
>; ð3Þ

The centroid can also be called the average position of the mass

distribution, that is, the position vector of the point is the

average position of the mass of each point position vector of the

point system. In the rectangular coordinate system, the

expression of each component of the point is as follows:

Xc ¼
Pn

i¼1 mixiPn
i¼1 mi

Yc ¼
Pn

i¼1 miyiPn
i¼1 mi

ð4Þ

For a 2D continuous image, f(x, y) � 0; pq in the p þ q order

matrix is a non-negative integer. For more discrete digital

images, Mpq and the central moment lpq are defined as follows:

mpq ¼
XN
j¼1

XN
x¼1

ipjqf i; jð Þ ð5Þ

lpq ¼
XN
j¼1

XN
i¼1

ði� icÞpð j� jcÞqf i; jð Þ ð6Þ

where, (ic, jc) is the centroid coordinate. The centroid of the

image is the 0th- and first-order moment. It is called a dynamic

particle by taking any point on the image f(i, j) as the initial

point of the search procedure, which can be continuously

modified from this point to the mass point of the target 2D

image. Let f(i, j) be the coordinates of the dynamic point. The

sum of the distances from all the points on the image to the

dynamic particles:

h k; lð Þ ¼

PN
j¼1

PN
i¼1

d i� k; j� kð Þf i; jð Þ

PN
j¼1

j� ljj f i; jð Þ þ
PN
i¼1

i� kjf i; jð Þj

h k; xð Þ þ h l; xð Þ

8>>>>><
>>>>>:

ð7Þ

Figure 2. Schematic diagram of actual measured wind speed and direction

with a lot of noise interference (v-t). The two factors that have the greatest

influence on oil spill behavior in sea breeze information are shown: east wind

and north wind. For the convenience of calculation, the extremely irregular

wind direction and wind speed information are fitted into smooth curves, and

the fitted data are input into sea wind factors according to the system trained

test channel, as the prediction of oil spill dynamic behavior.

Figure 3. Smooth plot of wind speed and direction at the Helland Hansen

site during the DeepSpill sea trial (v-t). After smoothing Figure 2, how to

process the input of the system by extremely irregular sea breeze is shown;

other processes are similar to this method.

Figure 4. Simulated map of seawater temperature at the Helland Hansen

site during the sea trial (T-t). In the image of temperature effect on oil spill

process, the temperature changes of different depths are detected. With the

increasing of ocean depth, the temperature drops sharply, but in the initial

stage of the oil spill, the temperature change of ocean surface and within 100

m is relatively slow; therefore, the influence of temperature on oil particles

can be correlated with random model, and the oil spill influence results closer

to the natural law can be obtained.
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Among them, h(k, l) is the sum of the distances of all the target

points, that is, the distance from the target point to x¼ k and

the vertical straight line y¼ l. As shown in Figures 5 and 6, a

total of 114 similar 2D experimental image data were collected

in the time range of T�[0, 200], and the internal template map

of the model and the model edge contour diagram at T¼ 10(s)

were obtained through the central moment theory.

When an oil spill accident occurs, it is usually accompanied

by the expansion, drift, evaporation, dispersion, emulsification,

and dissolution of the oil film (Kasimu, Wu, and Bian, 2019).

Only by analyzing the marine environment and oil spill

properties in time can it more accurately grasp and predict

the dynamic trajectory of the oil spill behavior. When the oil

spill mixture leaks into the designated sea area, in addition to

the influence of gravity, viscosity, and surface tension on the

self-expanding movement of the oil spill, the marine environ-

ment at that time, including wind speed and current, also had a

large influence on the behavior. When the mixture is subjected

to wind and currents, drift and diffusion will soon occur.

To further study the specific effects of wind Vw and ocean

current VF on an oil spill, the edge expansion displacement

factor a and edge drift rate factor b are introduced based on the

establishment of the initial oil spill model. At the same time,

the spatial position calculation equation of oil film particles

needs to be adjusted.

ZtþH ¼ XtþH þ jYtþH ð8Þ

Zn ¼ aZtþH þ bDt

2
þ DZr ð9Þ

Among them, ZtþH is the space position vector in Dt time, Zn is

the oscillation displacement after adding wind and influencing

factors of seawater flow, and DZr is the random walk distance of

oil particles at fixed points.

In this paper, to study the influence of wind and flow forces

on particles in the dynamic grid-reference coordinate system, it

is assumed that the effect of wind and flow forces on particles

can be regarded as a uniform effect in the process of image

processing. This paper introduces random factors into the

position of particles at time t under the constraint of Equations

(8) and (9). On the premise of Dt¼ 0, the influence of wind and

current forcing is considered to be a random result in a short

period of time, which is also relatively consistent in the complex

movement of oil particles in the actual oil spill environment.

The real-time random number is obtained with a Pytorch tool,

and the numerical value most in line with the natural change

law is obtained by graphics processing unit acceleration to

calculate the impact of both on particles. The randomness of

these two factors needs only to consider the weight distribution

of the two factors in a specific environment so that compared

with other traditional methods, the influence of wind and ocean

current on oil particles can be described more accurately and

simply.

The occurrence of oil spills is uncertain at the time level, and

the concentration trend of liquid diffusion is relatively vague;

therefore, the environmental pollution problems are more

serious (Nhat, Venkatatesan, and Khan, 2020). Only through

the prediction of the target’s diffusion trend and the scope of

coverage and making accurate rescue planning can the most

valuable oil spill cutoff time can be obtained. By assisting the

offshore oil spill warning system to track the development

trend of oil spill accidents, it can make a better scientific basis

for the future oil spill recovery link. Based on the establishment

of the silicon dioxide model in the first two sections, the

schematic diagram of the dynamic prediction system of the

LSTM network’s behavior in the event of an offshore oil spill

was described, which provided a theoretical support for the

realization of the model.

RESULTS
This paper first focuses on the establishment of the initial

model of the marine oil spill system. The following factors, the

edge contour characteristics of the experimental perimeter, the

area change with time, the melting rate, the irregular image

contour, etc., are analyzed at the same time. Then the model

was further mapped to the establishment of the marine oil spill

model based on the LSTM network. The dynamic behavior of

Figure 5. A total of 114 similar 2D experimental image data were collected

in the time range of TÚ[0, 200], and the spatial variable distribution of a

dynamic grid reference system, as a substitution of the traditional original

data sequence, was used as the system input.

Figure 6. The internal template map of the model and the model edge

contour diagram at T ¼ 10 (s) were obtained through the central moment

theory. Using this reference frame, we can capture the contour features of

the initial model more quickly, which is conducive to the image processing of

the dynamic changes of real objects and can increase the generalization

ability of the whole preprocessing process.
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the data is predicted, and the fitting curve of the test image

data is obtained, which verifies the feasibility of the method.

The actual melting rate of silicon dioxide is estimated based on

the edge profile parameters. Some images have lower original

pixels, blurred boundary features, and assumptions in the

experimental model, so there are more data materials to be

studied in the 2D time series images. To better describe the

characteristics of silicon dioxide’s profile, the factors that affect

the edge, shape (F), perimeter (L), area (S), and diffusion rate

(Vx) were selected as parameters. The former adopts the

method of data calculation, whereas this paper adopts the

intervention of random factors. In the process of neural

network learning, the correlation between [T – 1, t þ 1] can

be analyzed, and the weight value of different influencing

factors can be automatically modified to simplify the process of

trajectory prediction. The training model has portability. After

transfer learning, more and more training data will eventually

enhance the anti-interference ability of the model, some

problems also occur. In the model training process, in addition

to the wind and flow processes, this paper should also add the

other three aspects of the process research, which will make the

results more accurate. Combining the advantages and disad-

vantages of the two models, a comprehensive prediction model

of oil spill trajectory can be proposed in further research.

Numerical Model Validation
In the past, when researchers analyzed the effect of wind and

ocean currents on oil spills, they often set a commonly used

empirical wind influence factor (Hoang, Pham, and Nguyen,

2018; Lee, Kim, and Kim, 2017). Regarding the interaction of

wind and ocean currents on the oil spill trajectory, simulation

experiments in the tidal wind flume show that different

relative speeds will have different effects on the expansion

and deviation of oil particles. The experiment should select the

appropriate edge expansion displacement factor a and edge

drift rate factor b based on the relative velocity of wind Vw and

current VF in Dt. Combined with the mathematical model in

this paper, the relationships among Vw wind speed, VF water

speed, edge expansion displacement factor a, instantaneous oil

spill I, continuous oil spill C, and edge drift rate factor b are

shown in Table 1.

Figure 7 shows a stacked polyline of silicon dioxide melting

over time. Taking the space vector point of the established

dynamic grid reference system as the origin of the coordinates,

ignoring the microboundaries of the particles, the outline of the

particles in the collected picture is shown. The outline of all the

pictures and all the obtained particle information are integrat-

ed to obtain the movement track of the silicon dioxide particles.

Figure 8 shows a time-varying scatter plot of area and

perimeter. Through the analysis of the 2D time series image

database, the Matplotlib module in Python is used to establish a

data scatter plot to obtain the relevant edge contour parameters.

This same type of experiment can be compared with the

establishment of a model of an oil spill accident at sea. Figure 8

Table 1. The numerical relationship between V_w, V_F, a, I, C, b of the

system model.

Cm Vw Vf a b

I (þ) 0 (’2.14)† (’2.34)‡

(þ) (þ) (’2.38) (’4.84)

(þ) (–) (’1.56) 2.41

C (þ) 0 (’2.77)‡ (’2.35)

(þ) (þ) (’2.95) (’5.23)‡

(þ) (–) (’1.72) 2.65

†When the rate is changed, it is basically unchanged.
‡Changes a lot when the speed changes.

Figure 7. A stacked polyline of silicon dioxide melting over time. These lines

show the change process of the mass center of the object in the initial model.

It is important to grasp the overall transfer path of the whole oil spill

material in time in the process of monitoring the oil spill on the sea, which is

important to predict the scope of the oil spill process and the entire oil spill

accumulation area.

Figure 8. A time-varying scatter plot of area (A) and perimeter (B). These

two pictures show the change trend of area and perimeter with time in the

initial model. As an imaginary inverse process, the transformation law of

perimeter and area can play an important role in the prediction of oil spill

radius and oil spill edge characteristics of the oil spill model from the

geometric point of view.
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shows that with the continuous melting of silicon dioxide under

high temperature environment, its shape is irregular and

shows an overall decreasing trend, and the area gradually

decreases but the circumference shows obvious fluctuations.

Non-uniformity reduction occurs, but the total will gradually

decrease with the reduction of solids. Due to the irregular

change in concentration during oil spill, the circumference and

area increase irregularly, resulting in the change of color depth

on the satellite real-time image and the effect on the oil

diffusion rate.

The preprocessing of 2D image data is as follows. For the 2D

time series image given by the subject, plus the silicon dioxide

mentioned in the modeling assumption comprising non-

uniform unit substances, the area was calculated by the

image-based silicon dioxide fusion characterization model

constructed in this paper. The area is proportional to the

volume of the particle:

V xð Þ ¼ d � lim
i!‘

Xb

i¼1

Df xið Þ � hi � hð Þ; ð10Þ

where, d is the volume uniformity coefficient.

The results of this experiment show that the melting rate of

silicon dioxide is proportional to the volume, that is m¼a3DV,

where a is the mass uniformity coefficient, and then the area

characteristic index set by the second question can be used to

help the Matplotlib tool of Python 3.7.1 learn the differential

relationship of m-t to obtain a m-v curve. As shown Figure 8,

the melting speed of the model is 0.96310–23ka. Among them,

ka is a known constant for system monitoring.

Figure 9 shows the prediction model of behavioral dynamics

and the overall process of the model. The original video data

obtained in real time is preprocessed, and the rate of change of

the spatial distribution is used for estimation and prediction,

while the time delay caused by the use of original data

processing was attempted to be avoided to improve the system

response time. The preprocessed experimental data obtained

by the system is subjected to cyclic neural network learning,

and the data is transmitted and processed through the gates of

the input gate, the forget gate, and the output in the LSTM so

that the historical information fragments can be remembered

for a long time. Target video information was generated from

original data through the establishment of spatial distribution

coordinate system, video frame parser (VFP), decoder-encoder,

and other modules.

Figure 10 shows the topology of the LSTM network model

system. The system model uses two channels of raw data and

preprocessed data as the input layer of the entire experiment,

which greatly improves the calculation efficiency and accuracy

of channel extraction and reduces the analysis error caused by

single data input. The FC layer is a fully connected layer. When

the output video information can be flattened, it can be directly

connected to the output layer instead of passing through the

fully connected layer. It can learn the nonlinear combination

parameter characteristics required by some models in a

relatively simple way. Therefore, this method is used to learn

all the required weight values and to establish all relevant edge

feature relationships to integrate the features required by the

eligible model while reducing the proportion of features with

lower actual relationship with the model to improve the

Figure 9. Schematic diagram of realizing the operation process of the oil spill system based on deep learning. As the framework of the whole monitoring system,

this paper simply shows readers the prediction process of oil spill dynamic behavior under the action of neural network and responds quickly to the change of oil

spill state from the macroscopic and geometric perspectives, which is also the advantage of the whole system.

Figure 10. The topology of the LSTM network model system. Different from Figure 9, the internal part of the model structure of the oil spill prediction system is

shown. The neural network and the information memory function of LSTM are introduced to realize the trend prediction of the oil spill state at the initial stage of

oil spill. Compared with other models, it has a higher fault tolerance rate and better effect.
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learning model reliability. Here, P – tA is used as a pretraining

encoder on the second chain. The purpose is to seek the initial

value of the network weight to provide better optimization

capabilities and to reduce generalization and training errors.

In the model of dynamic video processing, a large number of

neurons are required based on the LSTM network algorithm.

Because the model has relevant features with low weight and

local connection, the topology using two fully connected layers

can indirectly increase the number of neurons.

When the test oil leaks into the relevant sea area, the method

of projecting the velocity vector to zero outside the normal

direction of the boundary is usually used to address the

boundary conditions. Figures 11 and 12 are the smooth

aviation oil spill profiles and the regional prediction results of

oil spill impact of the DeepSpill test from 0834 to 1357 on 27

June.

In Figure 11, the area enclosed by the solid line represents

the smooth contour obtained from the photograph taken in the

marine diesel-natural gas test. The light-colored elliptical set

represents the simulated prediction results of the oil spill

trajectory (0834:06–0839:47, 27 June).

In Figure 12, the area enclosed by the solid line represents

the smooth contour obtained from the photograph taken in the

marine diesel-natural gas test. The light-colored elliptical set

represents the simulated prediction results of the oil spill

trajectory (0911:36–1351:58, 29 June).

DISCUSSION
The offshore oil spill emergency system is a relatively large

operation group. The LSTM network can be used to learn

different weight parameters for edge contour features such as

real-time terrain, wind speed, concentration, etc., to more

realistically approximate the actual situation and predict more

stable oil spill behavior change trend. The proposed model uses

a dual-channel input mode to reduce the calculation error

caused by a single factor. At the same time, it reduces the

proportion of features that are less related to the model to

increase the reliability of model learning. Several edge contour

features need to be considered—shape (F), perimeter (L),

concentration (Cb), diffusion rate (Vx), area (Sv), etc.—and this

paper mainly refers to the simulation object with the change of

shape as the focus. The change of shape is relatively easy to

obtain. For the analysis of the change of the total oil spill and

the type of oil spill, including the distribution of oil film, the loss

of settled oil, and the eight dynamic processes of dirty oil. The

analysis will wait for the past data of special instrument

sensors and serve as the input of the entire monitoring system.

Through learning the training data, the weight parameters

will be continuously modified to achieve progressive improve-

ment of the monitoring system.

The data preprocessing of the oil spill dynamic prediction

model uses the spatial distribution variable preprocessing of

the dynamic grid reference system as the system input, which

can well avoid the prediction offset problem caused by the delay

of the multisensor processing of the original data. The LSTM

network uses a control gate to control the part that needs to be

memorized to remove or add information to the cell state. By

continuously acquiring test image data to learn and modify the

system model, it can finally predict the behavior of marine oil

spills.

For the prediction maps shown in Figures 11 and 12, the

prediction range will be larger than the actual one. This is

because the main body of the oil spilled, in addition to its own

expansion in the marine environment and in addition to drift,

evaporation, emulsification, and sinking also occurring, so that

the amount of oil spilled on the ocean surface is gradually

reduced, and the correlation between particles is ignored in the

randomness calculation through the random factor, thereby

magnifying the predicted image range of oil spill. In the process

of system optimization, the reinforcement training algorithm

should be better combined to simulate the required training

data to reduce human error.

Figure 11. The area enclosed by the solid line represents the smooth contour

obtained from the photograph taken in the marine diesel-natural gas test.

The light-shaded elliptical set represents the simulated prediction results of

the oil spill trajectory (0834:06–0839:47, 27 June).

Figure 12. The area enclosed by the solid line represents the smooth contour

obtained from the photograph taken in the marine diesel-natural gas test.

The light-shaded elliptical set represents the simulated prediction results of

the oil spill trajectory (0911:36–1351:58, 29 June).
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At the same time, it can be seen from the figure that the

assumed coverage of the oil particle model is low when t is

small, and the coverage of the later oil particle model gradually

increases with time. This is because with the increase of t, the

weight information is more accurate, and the error rate is

smaller. The appearance of this situation is very consistent

with the fitting characteristics and learning rules of deep

learning. This method is relatively simple and has a high fault

tolerance. It can be used as an oil spill auxiliary system. It can

also calculate and predict the oil spill trajectory and the

sensitive area of the oil spill effect in a short time, which

provides a basic basis for the handling and decision-making of

offshore oil spill accidents.

CONCLUSIONS
By establishing a dynamic behavior prediction model for

offshore oil spills based on deep learning, the image data

processing and dynamic prediction of edge contour feature

input are performed through the LSTM deep dual-channel

network, and the weight coefficients are continuously changed

to improve the memory update speed. In this model, the

proportion of contour shape and perimeter is strengthened, and

the weight of other factors is reduced. The experimental data

shows that the prediction error of the real image data and the

fitting curve obtained by predicting the experimental data of

the detection image indicate that the experimental error of the

feature data is within a reasonable error range. It also proves

that the LSTM network has many advantages as a special

existence in the RNN, which does not exist in the general RNN.

The LSTM can learn graphic data-containing noise in the real

environment with good stability and can provide reliable

interactive prediction. The robustness of the system after

special pretreatment can minimize human errors and cost and

provide a good auxiliary monitoring effect for the oil spill

emergency warning system. This model is used in the real-time

monitoring auxiliary system of oil spill diffusion, which can

improve the reliability of oil leakage early-warning during

movement. As an oil spill early-warning auxiliary system, the

model has a high fault tolerance rate. Although certain errors

occur in the experimental results, it can reflect the main

characteristics and show strong stability in general, and the

wind and current data can be obtained directly through the

sensor. It is relatively simple to predict the dynamic trajectory

of oil spill behavior, which provides a more suitable solution for

taking measures to block and recover oil spills. In addition, to

better reflect the feedback of more factors to the oil spill action,

the influence of factors such as concentration and type on the

time series of oil spill behavior should be further studied.
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